SUBSTITUTED DERIVATIVES OF BICYCLIC [4.3.0] HETEROARYL COMPOUNDS

Inventors: Roger D. Tung, Lexington, MA (US); Craig E. Masse, Cambridge, MA (US)

Assignee: Concert Pharmaceuticals, Inc., Lexington, MA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 643 days.

Appl. No.: 13/394,025
PCT Filed: Sep. 1, 2010
PCT No.: PCT/US2010/047557
PCT Pub. No.: WO2011/028820
PCT Pub. Date: Mar. 10, 2011

Prior Publication Data

References Cited
U.S. PATENT DOCUMENTS
5,648,357 A 7/1997 Bianco et al.
6,211,355 B1 4/2001 Foster
6,316,458 B1 11/2001 Nadler et al.
6,440,710 B1 8/2002 Keinan et al.
6,603,008 B1 8/2003 Ando et al.
6,754,130 B2 8/2004 Klein et al. 514/263.2

ABSTRACT

This invention relates to novel compounds of the Formula A, B, or C, and pharmaceutically acceptable salts thereof. This invention also provides compositions comprising one or more compounds of this invention and a carrier.

18 Claims, No Drawings
References Cited

FOREIGN PATENT DOCUMENTS

WO 95/26325 A2 10/1995
WO 96/05854 A2 2/1996

OTHER PUBLICATIONS

OTHER PUBLICATIONS

* cited by examiner
1

SUBSTITUTED DERIVATIVES OF bicyclic [4.3.0] HETEROARYL COMPOUNDS

RELATED APPLICATIONS

This application is the U.S. National Stage filed under 35 USC 371 of PCT/US2010/047557, filed Sep. 1, 2010, which claims the benefit of U.S. Provisional Application No. 61/239,371, filed on Sep. 2, 2009, the entire teachings of which are incorporated herein.

BACKGROUND OF THE INVENTION

Background of the Invention

Many current medicines suffer from poor absorption, distribution, metabolism and/or excretion (ADME) properties that prevent their wider use. Poor ADME properties are also a major reason for the failure of drug candidates in clinical trials. While formulation technologies and prodrug strategies can be employed in some cases to improve certain ADME properties, these approaches have failed to overcome the inherent ADME problems that exist for many drugs and drug candidates. One inherent problem is the rapid metabolism that causes a number of drugs, which otherwise would be highly effective in treating a disease, to be cleared too rapidly from the body. A possible solution to rapid drug clearance is frequent or high dosing to attain a sufficiently high plasma level of drug. This, however, introduces a number of potential treatment problems, such as poor patient compliance with the dosing regimen, side effects that become more acute with higher doses, and increased cost of treatment.

In some select cases, a metabolic inhibitor will be co-administered with an important drug that is rapidly cleared. Such is the case with the protease inhibitor class of drugs that are used to treat HIV infection. These drugs are typically co-dosed with ritonavir, an inhibitor of cytochrome P450 enzyme CYP3A4, the enzyme responsible for their metabolism. Ritonavir itself has side effects and it adds to the pill burden for HIV patients who must already take a combination of different drugs. Similarly, dextromethorphan which undergoes rapid CYP2D6 metabolism is being tested in combination with the CYP2D6 inhibitor quinidine for the treatment of pseudobulbar disease.

In general, combining drugs with cytochrome P450 inhibitors is not a satisfactory strategy for decreasing drug clearance. The inhibition of a CYP enzyme activity can affect the metabolism and clearance of other drugs metabolized by that same enzyme. This can cause those other drugs to accumulate in the body to toxic levels.

A potentially attractive strategy, if it works, for improving a drug’s metabolic properties is deuterium modification. In this approach, one attempts to slow the CYP-mediated metabolism of a drug by replacing one or more hydrogen atoms with deuterium atoms. Deuterium is a stable, non-radioactive isotope of hydrogen. Deuterium forms stronger bonds with carbon than hydrogen does. In select cases, the increased bond strength imparted by deuterium can positively impact the ADME properties of a drug, creating the potential for improved drug efficacy, safety, and tolerability. At the same time, because the size and shape of deuterium are essentially identical to hydrogen, replacement of hydrogen by deuterium would not be expected to affect the biochemical potency and selectivity of the drug as compared to the original chemical entity that contains only hydrogen.

Over the past 35 years, the effects of deuterium substitution on the rate of metabolism have been reported for a very small percentage of approved drugs (see, e.g., Blake, M I et al, J Pharm Sci, 1975, 64:367-91; Foster, AB, Adv Drug Res 1985, 14:1-40 (“Foster”); Kushner, D J et al, Can J Physiol Pharmacol 1999, 79-88; Fisher, M B et al, Curr Opin Drug Discov Devel, 2006, 9:101-09 (“Fisher”). The results have been variable and unpredictable. For some compounds deuteration caused decreased metabolic clearance in vivo. For others, there was no change in metabolism. Still others demonstrated decreased metabolic clearance. The variability in deuterium effects has also led experts to question or dismiss deuterium modification as a viable drug design strategy for inhibiting adverse metabolism. (See Foster at p. 35 and Fisher at p. 101).

The effects of deuterium modification on a drug’s metabolic properties are not predictable even when deuterium atoms are incorporated at known sites of metabolism. Only by actually preparing and testing a deuterated drug can one determine if and how the rate of metabolism will differ from that of its undeuterated counterpart. Many drugs have multiple sites where metabolism is possible. The site(s) where deuterium substitution is required and the extent of deuteration necessary to see an effect on metabolism, if any, will be different for each drug.

SUMMARY OF THE INVENTION

This invention relates to novel compounds that are substituted derivatives of bicyclic [4.3.0] heteroaryl compounds and pharmaceutically acceptable salts thereof. This invention also provides compositions comprising one or more compounds of this invention and a carrier.

DETAILED DESCRIPTION OF THE INVENTION

The term “treat” means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.

“Disease” means any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.

It will be recognized that some variation of natural isotopic abundance occurs in a synthesized compound depending upon the origin of chemical materials used in the synthesis. Thus, a preparation of a bicyclic [4.3.0] heteroaryl compound that is not isotopically labeled will inherently contain small amounts of deuterated isotopologues. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention. See, for instance, Wada E et al., Seikagaku, 1994, 66: 15; Gannes L Z et al., Comp Biochem Physiol Mol Integr Physiol, 1998, 119: 725. In a compound of this invention, when a particular position is designated as having deuterium, it is understood that the abundance of deuterium at that position is substantially greater than the natural abundance of deuterium, which is 0.015%. A position designated as having deuterium typically has a minimum isotopic enrichment factor of at least 3340 (50.1% deuterium incorporation) at each atom designated as deuterium in said compound.

The term “isotopic enrichment factor” as used herein means the ratio between the isotopic abundance and the naturally abundant stable hydrogen and carbon isotopes, not-withstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention.

In some cases, the effects of deuterium substitution on the rate of metabolism have been reported for a very small percentage of approved drugs (see, e.g., Blake, M I et al, J Pharm Sci, 1975, 64:367-91; Foster, AB, Adv Drug Res 1985, 14:1-40 (“Foster”); Kushner, D J et al, Can J Physiol Pharmacol 1999, 79-88; Fisher, M B et al, Curr Opin Drug Discov Devel, 2006, 9:101-09 (“Fisher”). The results have been variable and unpredictable. For some compounds deuteration caused decreased metabolic clearance in vivo. For others, there was no change in metabolism. Still others demonstrated decreased metabolic clearance. The variability in deuterium effects has also led experts to question or dismiss deuterium modification as a viable drug design strategy for inhibiting adverse metabolism. (See Foster at p. 35 and Fisher at p. 101).

The effects of deuterium modification on a drug’s metabolic properties are not predictable even when deuterium atoms are incorporated at known sites of metabolism. Only by actually preparing and testing a deuterated drug can one determine if and how the rate of metabolism will differ from that of its undeuterated counterpart. Many drugs have multiple sites where metabolism is possible. The site(s) where deuterium substitution is required and the extent of deuteration necessary to see an effect on metabolism, if any, will be different for each drug.

This invention relates to novel compounds that are substituted derivatives of bicyclic [4.3.0] heteroaryl compounds and pharmaceutically acceptable salts thereof. This invention also provides compositions comprising one or more compounds of this invention and a carrier.

DETAILED DESCRIPTION OF THE INVENTION

The term “treat” means decrease, suppress, attenuate, diminish, arrest, or stabilize the development or progression of a disease (e.g., a disease or disorder delineated herein), lessen the severity of the disease or improve the symptoms associated with the disease.

“Disease” means any condition or disorder that damages or interferes with the normal function of a cell, tissue, or organ.

It will be recognized that some variation of natural isotopic abundance occurs in a synthesized compound depending upon the origin of chemical materials used in the synthesis. Thus, a preparation of a bicyclic [4.3.0] heteroaryl compound that is not isotopically labeled will inherently contain small amounts of deuterated isotopologues. The concentration of naturally abundant stable hydrogen and carbon isotopes, notwithstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention. See, for instance, Wada E et al., Seikagaku, 1994, 66: 15; Gannes L Z et al., Comp Biochem Physiol Mol Integr Physiol, 1998, 119: 725. In a compound of this invention, when a particular position is designated as having deuterium, it is understood that the abundance of deuterium at that position is substantially greater than the natural abundance of deuterium, which is 0.015%. A position designated as having deuterium typically has a minimum isotopic enrichment factor of at least 3340 (50.1% deuterium incorporation) at each atom designated as deuterium in said compound.

The term “isotopic enrichment factor” as used herein means the ratio between the isotopic abundance and the naturally abundant stable hydrogen and carbon isotopes, not-withstanding this variation, is small and immaterial as compared to the degree of stable isotopic substitution of compounds of this invention.

In some cases, the effects of deuterium substitution on the rate of metabolism have been reported for a very small percentage of approved drugs (see, e.g., Blake, M I et al, J Pharm Sci, 1975, 64:367-91; Foster, AB, Adv Drug Res 1985, 14:1-40 (“Foster”); Kushner, D J et al, Can J Physiol Pharmacol 1999, 79-88; Fisher, M B et al, Curr Opin Drug Discov Devel, 2006, 9:101-09 (“Fisher”). The results have been variable and unpredictable. For some compounds deuteration caused decreased metabolic clearance in vivo. For others, there was no change in metabolism. Still others demonstrated decreased metabolic clearance. The variability in deuterium effects has also led experts to question or dismiss deuterium modification as a viable drug design strategy for inhibiting adverse metabolism. (See Foster at p. 35 and Fisher at p. 101).

The effects of deuterium modification on a drug’s metabolic properties are not predictable even when deuterium atoms are incorporated at known sites of metabolism. Only by actually preparing and testing a deuterated drug can one determine if and how the rate of metabolism will differ from that of its undeuterated counterpart. Many drugs have multiple sites where metabolism is possible. The site(s) where deuterium substitution is required and the extent of deuteration necessary to see an effect on metabolism, if any, will be different for each drug.
incorporation), at least 4500 (67.5% deuterium incorporation), at least 5000 (75% deuterium), at least 5500 (82.5% deuterium incorporation), at least 6000 (90% deuterium incorporation), at least 6333.3 (95% deuterium incorporation), at least 6466.7 (97% deuterium incorporation), at least 6600 (99% deuterium incorporation), or at least 6633.3 (99.5% deuterium incorporation).

In the compounds of this invention any atom not specifically designated as a particular isotope is meant to represent any stable isotope of that atom. Unless otherwise stated, when a position is designated specifically as "H" or "hydrogen", the position is understood to have hydrogen at its natural abundance isotopic composition. Also unless otherwise stated, when a position is designated specifically as "D" or "deuterium", the position is understood to have deuterium at an abundance that is at least 3340 times greater than the natural abundance of deuterium, which is 0.015% (i.e., at least 50.1% incorporation of deuterium).

The term "isotopologue" refers to a species that differs from a specific compound of this invention only in the isotopic composition thereof.

The term "compound," when referring to a compound of this invention, refers to a collection of molecules having an identical chemical structure, except that there may be isotopic variation among the constituent atoms of the molecules. Thus, it will be clear to those of skill in the art that a compound represented by a particular chemical structure containing indicated deuterium atoms, will also contain lesser amounts of isotopologues having hydrogen atoms at one or more of the designated deuterium positions in that structure. The relative amount of such isotopologues in a compound of this invention will depend upon a number of factors including the isotopic purity of deuterated reagents used to make the compound and the efficiency of incorporation of deuterium in the various synthesis steps used to prepare the compound. However, as set forth above, the relative amount of such isotopologues in toto will be less than 49.9% of the compound.

The invention also provides salts of the compounds of the invention. A salt of a compound of this invention is formed by reaction with a pharmaceutically acceptable acid. Acceptable salts include inorganic acids such as hydrogen chloride, hydrobromic acid, hydroiodic acid, sulfuric acid and phosphoric acid, as well as organic acids such as para-toluenesulfonic acid, salicylic acid, tartaric acid, methoxybenzoate, phthalate, terephthalate, sulfonate, xylene sulfonate, phenylacetate, phenylpropionate, phenylbutyrate, citrate, lactate, β-hydroxybutyrate, glycolate, maleate, tartrate, methanesulfonate, propanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, mandelate and other salts. In one embodiment, pharmaceutically acceptable acid addition salts include those formed with mineral acids such as hydrochloric acid and hydrobromic acid, and especially those formed with organic acids such as maleic acid.

It is understood that the carbon atom that bears substituents Y¹ and Y² in Formula A, B, or C can be chiral in some instances (when Y¹, Y² and R³ are different from one another) and in other instances it can be achiral (when at least two of Y¹, Y² and R³ are the same). As such, chiral compounds of this invention can exist as either individual enantiomers, or as racemic or enantiomeric mixtures of enantiomers. Accordingly, a compound of the present invention will include racemic and chiral enantiomeric mixtures, as well as individual respective stereoisomers that are substantially free from another possible stereoisomer. The term "substantially free of other stereoisomers" as used herein means less than 25% of other stereoisomers, preferably less than 10% of other stereoisomers, more preferably less than 5% of other stereoisomers and most preferably less than 2% of other stereoisomers are present. Methods of obtaining or synthesizing an individual enantiomer for a given compound are well known in the art and may be applied as practicable to final compounds or to starting material or intermediates.

Unless otherwise indicated, when a disclosed compound is named or depicted by a structure without specifying the stereochemistry and has one or more chiral centers, it is understood to represent all possible stereoisomers of the compound.

The term "stable compounds," as used herein, refers to compounds which possess stability sufficient to allow for their manufacture and which maintain the integrity of the compound for a sufficient period of time to be useful for the purposes detailed herein (e.g., formulation into therapeutic products, intermediates for use in production of therapeutic compounds, isolatable or storable intermediate compounds, treating a disease or condition responsive to therapeutic agents).

"D" refers to deuterium. "Stereoisomer" refers to both enantiomers and diastereomers. "Tert", "t-", and "t-" each refer to tertiary. "US" refers to the United States of America.

The term "optionally substituted with deuterium" means that one or more hydrogen atoms in the referenced moiety or compound may be replaced with a corresponding number of deuterium atoms. Throughout this specification, a variable may be referred to generally (e.g., "each R") or may be referred to specifically (e.g., R¹, R², R³, etc.). Unless otherwise indicated, when a variable is referred to generally, it is meant to include all specific embodiments of that particular variable.
Therapeutic Compounds

The present invention provides a compound of Formula A:

or a pharmaceutically acceptable salt thereof, wherein each \(Z^2 \) is hydrogen or deuterium; each \(Z^3 \) is hydrogen or deuterium; each \(Z^4 \) is hydrogen or deuterium; each \(Z^5 \) is hydrogen or deuterium; the bicyclic ring system bearing \(X \) and \(Q \) is selected from:

- \((i) \) a 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione ring
 - where \(X \) is \(CR^1 \) and \(Q \) is \(NR^7 \), and
- \((ii) \) a 1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ring
 - where \(X \) is \(NR^1 \) and \(Q \) is \(CR^1 \).

Either \((a) \) \(Y^1 \) is \(OH \), and \(Y^2 \) is hydrogen or deuterium, or \((b) \) \(Y^1 \) and \(Y^2 \) are taken together with the carbon to which they are attached to form \(C=O \).

- \(R^1 \) is \(-CH_3 \) or \(-CD_3 \);
- \(R^2 \) is \(-CH_3 \) or \(-CD_3 \);
- \(R^5 \) is hydrogen or deuterium; and
- \(R^7 \) is \(-CH_3 \), \(-CD_3 \), hydrogen or deuterium.

One embodiment of this invention relates to a compound of Formula A(i) wherein the bicyclic ring system bearing \(X \) and \(Q \) is a 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione ring:

or a pharmaceutically acceptable salt thereof, where the \(Y, Z \) and \(R \) variables are as described above in Formula A. In one embodiment, \(R^{1a} \) is \(CH_3 \). In another embodiment, \(R^{1a} \) is \(CD_3 \).

Another embodiment relates to a compound of Formula A(ii) wherein the bicyclic ring system bearing \(X \) and \(Q \) is a 1H-pyrrolo[3,2-d]pyrimidine-2,4(3H,5H)-dione ring:

or a pharmaceutically acceptable salt thereof, where the \(Y, Z \) and \(R \) variables are as described above in Formula A. In one embodiment, \(R^1 \) is \(CH_3 \). In another embodiment, \(R^1 \) is \(CD_3 \), or a pharmaceutically acceptable salt thereof, where the \(Y, Z \) and \(R \) variables are as described above in Formula A. In one embodiment, \(R^{1a} \) is \(CH_3 \). In another embodiment, \(R^{1a} \) is \(CD_3 \).

In one embodiment, \(R^2 \) is hydrogen. In another embodiment, \(R^2 \) is deuterium. In one embodiment, \(R^2 \) is \(CH_3 \). In another embodiment, \(R^2 \) is \(CD_3 \).

As used herein, "a compound of Formula A" includes a compound of Formula A(i) and a compound of Formula A(ii).

The present invention also provides a compound of Formula B:

or a pharmaceutically acceptable salt thereof, wherein each \(Z^2 \) is hydrogen or deuterium; each \(Z^3 \) is hydrogen or deuterium; each \(Z^4 \) is hydrogen or deuterium; each \(Z^5 \) is hydrogen or deuterium; the bicyclic ring system bearing \(X \) and \(Q \) is selected from:

- \((i) \) a 1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione ring
 - where \(X \) is \(NR^7 \) and \(Q \) is \(N \);
- \((ii) \) a 2H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione ring
 - where \(X \) is \(N \) and \(Q \) is \(NR^1 \); and
- \((iii) \) a [1,2,5]thiadiazolo[3,4-d]pyrimidine-5,7(4H,6H)-dione ring
 - where \(X \) is \(N \) and \(Q \) is \(S \);

Either \((a) \) \(Y^1 \) is \(OH \), and \(Y^2 \) is hydrogen or deuterium, or \((b) \) \(Y^1 \) and \(Y^2 \) are taken together with the carbon to which they are attached to form \(C=O \);

- \(R^1 \) is \(-CH_3 \) or \(-CD_3 \);
- \(R^2 \) is \(-CH_3 \) or \(-CD_3 \);
- \(R^7 \) is \(R^1 \), hydrogen or deuterium.

One embodiment of this invention relates to a compound of Formula B(i) wherein the bicyclic ring system bearing \(X \) and \(Q \) is a 1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione ring:

or a pharmaceutically acceptable salt thereof, where the \(Y, Z \) and \(R \) variables are as described above in Formula B. In one embodiment, \(R^1 \) is \(R^2 \) is \(R^{1a} \) is \(CH_3 \). In another embodiment, \(R^1 \) is \(CD_3 \).

Another embodiment relates to a compound of Formula B(ii) wherein the bicyclic ring system bearing \(X \) and \(Q \) is a 2H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione ring:

or a pharmaceutically acceptable salt thereof, where the \(Y, Z \) and \(R \) variables are as described above in Formula B. In one embodiment, \(R^1 \) is \(CH_3 \). In another embodiment, \(R^1 \) is \(CD_3 \).
Y¹ and Y² are taken together with the carbon to which they are attached to form C==O. In another aspect, Y¹ is OH, and Y² is hydrogen or deuterium.

Another embodiment provides a compound of Formula A, B, or C, wherein each Z², Z³, Z⁴ and Z⁵ is deuterium. In one aspect, Y¹ and Y² are taken together with the carbon to which they are attached to form C==O. In another aspect, Y¹ is OH, and Y² is hydrogen or deuterium.

Another embodiment provides a compound of Formula A, B, or C, wherein Z² is deuterium and either each of Z¹, Z³ and Z⁴ is hydrogen or each of Z¹, Z³ and Z⁴ is deuterium. In one aspect, Y¹ and Y² are taken together with the carbon to which they are attached to form C==O. In another aspect, Y¹ is OH, and Y² is hydrogen or deuterium.

A further embodiment provides a compound of Formula A, B, or C, wherein Y¹ and Y² are taken together with the carbon to which they are attached to form C==O. A still further embodiment provides a compound of Formula A, B, or C, wherein Y¹ is OH, and Y² is hydrogen or deuterium.

Specific examples of compounds of Formula A, B and C include those shown in Tables 1-8 (below) or pharmaceutically acceptable salts thereof.
<table>
<thead>
<tr>
<th>Compound</th>
<th>R₁</th>
<th>R²</th>
<th>R³</th>
<th>Z¹</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>145</td>
<td>CH₃</td>
<td></td>
<td></td>
<td>D</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>146</td>
<td>CH₃</td>
<td></td>
<td></td>
<td>D</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>147</td>
<td>CH₃</td>
<td></td>
<td></td>
<td>D</td>
<td>D</td>
<td>OH</td>
</tr>
</tbody>
</table>

TABLE 2

Examples of Specific Compounds of Formula A(i) wherein R² is CH₃ or CD₃ as indicated in the table. In the following table, Z², Z³, and Z⁴ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>R³</th>
<th>R⁴</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>211</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>212</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>213</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>214</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>215</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>216</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>217</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>219</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>221</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>222</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>223</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>224</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>225</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>226</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>227</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>228</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>229</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>238</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>239</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>244</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>CH₃</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>252</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>253</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>257</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>CD₃</td>
<td>H</td>
<td>H</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 3-continued
Examples of Specific Compounds of Formula B(i), wherein Z₂, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R¹</th>
<th>R²</th>
<th>R³</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>726</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>727</td>
<td>CD₄</td>
<td>CH₃</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>728</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>729</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>730</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>731</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>732</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>733</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>734</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>735</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>736</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>737</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>738</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>739</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>740</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>741</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>742</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>743</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>744</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>745</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>746</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>747</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
</tbody>
</table>

TABLE 4
Examples of Specific Compounds of Formula B(ii), wherein R¹ is hydrogen. In the following table, Z₂, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>302</td>
<td>CH₃</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>303</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>304</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>306</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>307</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>308</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>309</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>311</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 5
Examples of Specific Compounds of Formula B(iii). In the following table, Z₂, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>R³</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>501</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>502</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>503</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>504</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>505</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>506</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>507</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>508</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>509</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>511</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>513</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>514</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>515</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>516</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>517</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>518</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6
Examples of Specific Compounds of Formula B(ii). In the following table, Z₂, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>601</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>602</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>603</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>604</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>605</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>606</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>607</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
</tr>
<tr>
<td>608</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>609</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>610</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>611</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>612</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>613</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>614</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>615</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>616</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>617</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>618</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>619</td>
<td>CD₄</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
</tr>
<tr>
<td>620</td>
<td>CH₃</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>621</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>622</td>
<td>CH₃</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
<tr>
<td>623</td>
<td>CD₄</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
</tr>
</tbody>
</table>

TABLE 7
Examples of Specific Compounds of Formula B(iii). In the following table, Z₂, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R²</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>401</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>402</td>
<td>CH₃</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>403</td>
<td>CD₄</td>
<td>D</td>
<td>taken together as =O</td>
<td></td>
</tr>
<tr>
<td>404</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>405</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>406</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>407</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>408</td>
<td>CH₃</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>409</td>
<td>CD₄</td>
<td>H</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>CH₃</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
<tr>
<td>411</td>
<td>CD₄</td>
<td>D</td>
<td>OH</td>
<td></td>
</tr>
</tbody>
</table>

TABLE 8
Examples of Specific Compounds of Formula C, wherein Z₁, Z₃, and Z₄ are each hydrogen.

<table>
<thead>
<tr>
<th>Compound</th>
<th>R¹⁴</th>
<th>R¹</th>
<th>R²</th>
<th>Z²</th>
<th>Y¹</th>
<th>Y²</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>CH₃</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>801</td>
<td>CD₄</td>
<td>CH₃</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
<td></td>
</tr>
<tr>
<td>802</td>
<td>CH₃</td>
<td>CD₄</td>
<td>H</td>
<td>taken together as =O</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The invention is also directed to the compounds E(i)-E(xiii):

In another set of embodiments, any atom not designated as deuterium in any of the embodiments set forth above is present at its natural isotopic abundance.

The synthesis of compounds of this invention can be achieved by synthetic chemists of ordinary skill with reference to the Schemes below.

Exemplary Synthesis

Exemplary methods for synthesizing compounds of Formula A, B, or C are depicted in the following schemes.
Scheme 1. Synthesis of compounds of Formula A(i) wherein Z² is D.

1. \(R^2 = CD_3 \)
 (commercially available)

2. \(\text{EtO} \) + \(\text{CN} \)

3. \(\text{NaOEt, EtOH, reflux} \)

4. \(R - I \)
 \(4(1a, 4b \text{ or } 4c) \)
 \(\text{NaH, DMSO} \)

5. \(\text{Dess-Martin Oxidation} \)

6. \(\text{R}^6 \text{OH} \)

7. \(\text{R}^6 \text{H} \)

8. \(\text{Cl} \)

9. \(\text{R}^6 \text{Cl} \)

10(i). \(\text{R}^{1a} = \text{H} \)

10(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

11(i). \(\text{R}^{1a} = \text{H} \)

11(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

12(i). \(\text{R}^{1a} = \text{H} \)

12(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

13(i). \(\text{R}^{1a} = \text{H} \)

13(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

14(i). \(\text{R}^{1a} = \text{H} \)

14(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

15(i). \(\text{R}^{1a} = \text{H} \)

15(ii). \(\text{R}^{1a} = \text{CH}_3 \text{ or } CD_3 \)

16. \(\text{HCl, Et}_{3} \text{O, MeOH} \)

17. \(\text{Dess-Martin Oxidation} \)
1. HCl, Et₂O, MeOH

2. Dess-Martin [O]

13(i) - R¹⁰ = H
13(ii) - R¹⁰ = CH₃ or CD₃

16(i) - R¹⁰ = H
16(ii) - R¹⁰ = CH₃ or CD₃

X = H or D

R'ₐ =

R'ₖ =

R'ₖ =

R'' =
Scheme I shows an example of a synthesis of a compound of Formula A(i) wherein Z_2 is D and either (A) R_7 is hydrogen, or (B) R_7 is CH$_3$ or CD$_3$. As shown in Scheme I, commercially available trideuteromethylurea 1 is condensed with methyl cyanocarboxylate 2 analogously to what is described by Elzein et al., J. Med. Chem. 2008, 51, 2269-78 to provide pyrimidinedione 3. N-alkylation of 3 with alkyl iodide R_1-X_4 provides 5. As used in Scheme I and the Schemes below, X_4 is used to denote 4a, 4b, or 4c, which represent respectively the (S) enantiomer, the (R) enantiomer, and the racemic mixture of the alkyl iodide, as also shown in Scheme I. Each of 4a, 4b and 4c may be prepared as described in Scheme VII below.

5 is now allowed to react with either (i) chloroacetaldehyde 9 in a manner analogous to the procedure of Haraka et al., Chem. Pharm. Bul. 1974, 22, 1459-67, to provide the 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione 10(i); or (ii) α-chloroacetal 8 to provide the 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione 10(ii). 8 is prepared as described in Scheme I by Dess-Martin oxidation of 6 to provide 7. 7 is then chlorinated with sulfuryl chloride and then treated with methanol to provide 8.

To provide a compound where R_7 is hydrogen, 10(i) and 10(ii) are treated (path (A)) with either HCl in methanol and ether to provide 13(i) and 13(ii), respectively, or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation to provide 14(i) and 14(ii), respectively. Both of the above alternative steps are conducted in a manner analogous to what is described in Cui et al., Biorg. Med. Chem. Lett. 2006, 16, 3401-05. In 13(i) and 13(ii), the group R' may be R'_a, R'_b, or R'_c, each of which is defined in Scheme I. The definition of R' also applies to structures containing R' in the Schemes below. The stereocchemistry configuration of R'_a, R'_b and R'_c in 13(i) and 13(ii), and in all structures that contain the group R' corresponds to the configuration of the R group in 4a, 4b, and 4c, respectively. In 14(i) and 14(ii), the group R'' is defined in Scheme I. The definition of R'' also applies to structures containing R'' in the Schemes below.

To provide a compound where R_7 is CH$_3$ or CD$_3$, 10(i) and 10(ii) are alkylated (path (B)) with dialkylsulfate 11 to provide 12(i) and 12(ii), respectively. 12(i) and 12(ii) are then treated with either HCl in methanol and ether to provide 15(i) and 15(ii), respectively or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation to provide 16(i) and 16(ii), respectively.

Scheme II shows an example of a synthesis of a compound of Formula A(ii) wherein Z_2 is D. Commercially available trideuteromethylurea 1 is condensed with diketene 36 analogously to what is described in Vidal et al., Biorg. Med. Chem. Lett. 2006, 16, 3642-45 to provide pyrimidinedione 37. N-alkylation with 4 followed by nitration of the pyrimidinedione with nitric acid and sulfuric acid in a manner analogous to Vidal et al. provides pyrimidinedione 39. Condensation with dimethyl formamide-dimethylacetal analogously to what is described by Haraka et al., Chem. Pharm. Bul. 1974, 22, 2593-2598 provides enamine 40 which on treatment with H$_2$ and Pd/C undergoes reductive cyclization to 41. 41 is alkylated with R'_1-X_4 in a manner analogous to Haraka et al. to provide 42, which is then treated with either HCl in methanol and ether to provide 43(i) and 43(ii), respectively or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation to provide 44. Both of the above alternative steps are conducted in a manner analogous to what is described in Cui et al., Biorg. Med. Chem. Lett. 2006, 16, 3401-05.
Scheme III. Synthesis of compounds of Formula B(i) wherein R7 is hydrogen and Z2 is D.

Scheme III shows an example of a synthesis of a compound of Formula B(i) wherein Z2 is D and R7 is hydrogen. As shown in Scheme III, 6-chloropyrimidine-2,4(1H,3H)-dione 22 is alkylated with alkyl iodide R2—I 23 to give 24 in a manner analogous to that described by Pfleiderer et al., J. Heterocyclic Chem. 1998, 35, 949-54. 24 is then reacted with sodium azide and potassium carbonate analogously to what is described by Nagamatsu et al., Synthesis 2006, 4167-79 to form 1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione 25. 25 is treated with benzyl iodide 26 to provide a mixture of 27(a) and 27(b). 27(a) and 27(b) are then separated and each is N-alkylated with 4 analogously to what is described in U.S. Pat. No. 6,878,715 to provide, respectively, 28(a) and 28(b).

Each of 28(a) and 28(b) is then treated with HCl in methanol and ether to provide 29(a) and 29(b), respectively. 29(b) then tautomerizes to 29(a).

Alternatively, each of 28(a) and 28(b) is treated with etheral HCl in methanol followed by subsequent Dess-Martin oxidation of 29(a) to provide 30(a).
Scheme IV. Synthesis of (A) compounds of Formula B(i) wherein $R_7 = R_1 = \text{CH}_3$ or CD_3 and Z_2 is D and (B) compounds of Formula B(ii) wherein Z_2 is D.

Scheme IV shows an example of a synthesis of (A) compounds of Formula B(i) wherein Z_2 is D and R_7 is CH$_3$ or CD$_3$ and (B) compounds of Formula B(ii) wherein Z_2 is D.

As shown in Scheme IV, 6-chloropyrimidine-2,4(1H,3H)-dione 22 is alkylated with alkyl iodide R_2—I to give 24 in a manner analogous to that described by Pfleiderer et al., J. Heterocyclic Chem. 1998, 35, 949-54. 24 is then reacted with sodium azide and a base such as potassium carbonate analogously to what is described by Nagamatsu et al., Synthesis 2006, 4167-79 to form 1H-[1,2,3]triazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione 25. 25 is treated with alkyl iodide R_1—I to provide a mixture of 32(a) and 32(b). 32(a) and 32(b) are then separated.

To provide a compound of Formula B(i) (path (A)), 32(a) is N-alkylated with 4 analogously to what is described in U.S. Pat. No. 6,878,715 to provide 33(a). 33(a) is then treated with either HCl in methanol and ether or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation.

1. HCl, Et$_2$O, MeOH;
2. Dess-martin [O]
tin oxidation to provide 35(a). Both of the above alternative steps are conducted in a manner analogous to what is described in Cui et al., Biorg. Med. Chem. Lett. 2006, 16, 3401-05.

To provide a compound of Formula B(ii) (path (B)), 32(b) is N-alkylated with 4 analogously to what is described in U.S. Pat. No. 6,878,715 to provide 33(b). 33(b) is then treated with either HCl in methanol and ether to provide 34(b) or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation to provide 35(b).

Scheme V. Synthesis of compounds of Formula B(iii) wherein \(Z_2 \) is D.

Scheme VI. Synthesis of compounds of Formula C wherein \(Z_2 \) is D, \(R_{10} \) is \(CD_3 \), and \(R_5 \) is deuterium.
Scheme VI shows an example of a synthesis of a compound of Formula C wherein Z is D, R1 is CD3 and R5 is deuterium. The synthesis is carried out under conditions analogous to those described in Cui et al., Biorg. Med. Chem. Lett. 2006, 16, 3401-05. As shown in Scheme VI, aminoacetic acid 45 is reacted with commercially available hexadeuteroacetic anhydride to 46 provide amide 47. Treatment of 47 with DCl in D2O provides amino-d5-acetone 48. Formation of the dimethylketal 50 is accomplished by treatment with trimethylorthoformate 49. 50 is allowed to react with 6-chloro-1,3,5-triazine-2,4(lH,3H) 52 (obtained from 2,4,6-trichloro-1,3,5-triazine 51 by treating with a base such as NaOH) to provide 53. On treatment with d2-sulfuric acid, 53 undergoes an intramolecular cyclization to provide 54. 54 is then successively alkylated with alkyl iodide R2—123 and alkyl iodide 4 to provide 56. 56 is then treated with either HCl in methanol and ether to provide 57 or with ethereal HCl in methanol followed by subsequent Dess-Martin oxidation to provide 58.
Scheme VII shows an example of a synthesis of R—1 alkyl iodide 4a, 4b and 4c. To prepare 4a, the (S) enantiomer, allyl-acetone 59 is treated with base in D$_2$O to provide the deuterated 60, which is reduced with NaBD$_4$ to provide racemic 61. Treatment of 61 in a manner analogous to that described by Conti et al. *Tetrahedron Asymm* 1998, 9, 657 affords butyric ester 62 having the (R) configuration at the carbon alpha to the CD$_3$ group and alcohol 63 having the (S) configuration at the carbon alpha to the CD$_3$ group. Acetylation of 63 followed by oxidative hydroboration of the olefinic bond and iodination of the resulting alcohol 65 provides 4a.

In a similar manner, racemic mixture 4c may be obtained from acetylation of 61 followed by oxidative hydroboration of the olefinic bond and iodination of the resulting racemic alcohol.

4b, the (R) enantiomer, may be obtained from 62 by transesterification to provide 66. Oxidative hydroboration of the olefinic bond of 66 and iodination of the resulting alcohol 67 provides 4b. Alternatively, 62 itself may undergo oxidative hydroboration of the olefinic bond, and iodination of the resulting alcohol 68 provides 69. 69 may be used instead of 4b in Schemes I-VI.

Compounds having a hydrogen in place of deuterium at the stereocenter of 61-69 and 4a-4c shown in Scheme VII may be obtained by reacting 60 with NaBH$_4$ instead of NaBD$_4$.
herein is administered transdermally (e.g., using a transdermal patch or iontophoretic techniques). Other formulations may conveniently be presented in unit dosage form, e.g., tablets, sustained release capsules, and in liposomes, and may be prepared by any methods well known in the art of pharmacy. See, for example, Remington: The Science and Practice of Pharmacy, Lippincott Williams & Wilkins, Baltimore, Md. (20th ed. 2000).

Such preparative methods include the step of bringing into association with the molecule to be administered ingredients such as the carrier that constitutes one or more accessory ingredients. In general, the compositions are prepared by uniformly and intimately bringing into association the active ingredients with liquid carriers, liposomes or finely divided solid carriers, or both, and then, if necessary, shaping the product.

In certain embodiments, the compound is administered orally. Compositions of the present invention suitable for oral administration may be presented as discrete units such as capsules, sachets, or tablets each containing a predetermined amount of the active ingredient; a powder or granules; a solution or a suspension in an aqueous liquid or a non-aqueous liquid; an oil-in-water liquid emulsion; a water-in-oil liquid emulsion; packed in liposomes; or as a bolus, etc. Soft gelatin capsules can be useful for containing such suspensions, which may beneficially increase the rate of compound absorption.

In the case of tablets for oral use, carriers that are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried cornstarch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.

Compositions suitable for oral administration include lozenges comprising the ingredients in a flavored basis, usually sucrose and acacia or tragacanth; and pastilles comprising the active ingredient in an inert basis such as gelatin and glycerin, or sucrose and acacia.

Compositions suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampules and vials, and may be stored in a freeze dry (lyophylized) condition requiring only the addition of the sterile liquid carrier, for example water for injections, immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets.

Such injection solutions may be in the form, for example, of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butane diol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium.

For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.

The pharmaceutical compositions of this invention may be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature and therefore will melt in the rectum to release the active components. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.

The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art. See, e.g.: Robinowitz, JD and Zaffaroni, AC, U.S. Pat. No. 6,803,031, assigned to Alexza Molecular Delivery Corporation.

Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible by topical application. For topical application to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petrolatum, white petroleum, propylene glycol, polyoxyethylene polyoxypropylene compound, emulsifying wax, and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldecanol, benzyl alcohol, and water. The pharmaceutical compositions of this invention may additionally be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-transdermal patches and iontophoretic administration are also included in this invention.

Application of the subject therapeutics may be local, so as to be administered at the site of interest. Various techniques can be used for providing the subject compositions at the site of interest, such as injection, use of catheters, trocars, projectiles, pharonic gel, stents, sustained drug release polymers or other device which provides for internal access.

Thus, according to yet another embodiment, the compounds of this invention may be incorporated into compositions for coating an implantable medical device, such as prostheses, artificial valves, vascular grafts, stents, or catheters. Suitable coatings and the general preparation of coated implantable devices are known in the art and are exemplified in U.S. Pat. Nos. 6,099,562; 5,886,026; and 5,304,121. The coatings are typically biocompatible polymeric materials such as a hydrogel polymer, polyethylene glycol, polycaprolactone, polylethylene glycol, polyactic acid, ethylene vinyl acetate, and mixtures thereof. The coatings may optionally be further covered by a suitable topcoat of fluorosilicone, polysaccharides, polyethylene glycol, phospholipids or combinations thereof to impart controlled release characteristics.
nephrotoxicity; collagenous colitis and other diseases and/or pain in breast cancer patients; brain and central nervous system damage; hypertension-induced renal failure, and other chronic kidney diseases; alcoholic hepatitis; radiation-associated fibrosis; necrotizing enterocolitis in premature neonates; diabetic nephropathy; enterocolitis; nonalcoholic steatohepatitis; nephrotic syndrome; other allograft reactions; diet-induced fatty liver conditions, interleukin-1 mediated disease; graft versus host reaction and other allograft reactions; diet-induced fatty liver conditions,atheromatous lesions, fatty liver degeneration and other diet-induced high fat or alcohol-induced tissue-degenerative conditions; human immunodeficiency virus type 1 (HIV-1) and other human retroviral infections; multiple sclerosis; cancer; fibroproliferative diseases; fungal infection; drug-induced nephrotoxicity; collagenous colitis and other diseases and/or conditions characterized by elevated levels of platelet derived growth factor (PDGF) or other inflammatory cytokines; endometriosis; optic neuropathy and CNS impairments associated with acquired immunodeficiency syndrome (AIDS), immune disorder diseases; or multiple sclerosis; autoimmune disease; upper respiratory viral infection; depression; urinary incontinence; irritable bowel syndrome; septic shock; Alzheimers Dementia; neuropathic pain; dysuria; renal or optic nerve damage; peptic ulcer; insulin-dependent diabetes; non-insulin-dependent diabetes; diabetic nephropathy; metabolic syndrome; obesity; insulin resistance; dyslipidemia; pathological glucose tolerance; hypertension; hyperlipidemia; hyperuricemia; gout; hypercoagulability; and inflammation or injury associated with neutrophil chemotaxis and/or degranulation. The compounds of this invention can also be used to control intraocular pressure or to stabilize auto-regulation of cerebral blood flow in subjects who require such control as determined by medical examination.

In one embodiment, the second therapeutic agent is selected from vitamin A, vitamin E, and hydroxyurea.

In another embodiment, the second therapeutic agent is useful in the treatment of diabetes or an associated disorder, and is selected from insulin or insulin analogues, glucagon-like-peptide-1 (GLP-1) receptor agonists, sultfonylurea agents, biguanide agents, alpha-glucosidase inhibitors, PPAR agonists, meglitinide agents, dipeptidyl-peptidase (DPP) IV inhibitors, other phosphodiesterase (PDE1, PDE5, PDE9, PDE10 or PDE11) inhibitors, amylase inhibitors, CoEnzyme A inhibitors, and anticoagulation agents.

Specific examples of insulin include, but are not limited to Humulin® (human insulin, rDNA origin), Novolin® (human insulin, rDNA origin), Velosulin® BR (human buffered regular insulin, rDNA origin), Exubera® (human insulin, inhale), and other forms of inhaled insulin, for instance, as delivered by Mannkinds’s “Technosphere Insulin System”.

Specific examples of insulin analogues include, but are not limited to Tolinase (CAS-No. 1997019686, EP 0640342, WO 2003013568, WO 2001032156, WO 2006035418, and WO 1996005838).

According to another embodiment, the invention provides an implantable medical device coated with a compound or a composition comprising a compound of this invention, such that said compound is therapeutically active.

Where an organ or tissue is accessible because of removal from the patient, such organ or tissue may be bathed in a medium containing a composition of this invention, a composition of this invention may be painted onto the organ, or a composition of this invention may be applied in any other convenient way.

In another embodiment, the composition of this invention further comprises a second therapeutic agent. The second therapeutic agent may be selected from any compound or therapeutic agent known to have or that demonstrates advantageous properties when administered with a compound having the same mechanism of action as pentoxifylline. Such agents include those indicated as being useful in combination with pentoxifylline, including but not limited to, those selected from peripheral obstructive vascular disease; glomerulonephritis; nephrotic syndrome; nonalcoholic steatohepatitis; Leishmaniasis; cirrhosis; liver failure; Duchenne’s muscular dystrophy; acute radiation induced injuries; radiation induced lymphedema; radiation-associated necrosis; alcholic hepatitis; radiation-associated fibrosis; neutrophilic enterocolitis in premature neonates; diabetic nephropathy, hypertension-induced renal failure, and other chronic kidney disease; Focal Segmental Glomerulosclerosis; pulmonary sarcoidosis; recurrent aphthous stomatitis; chronic breast pain in breast cancer patients; brain and central nervous system tumors; malnutrition-inflammation-caeahexia syndrome; interleukin-1 mediated disease; graft versus host reaction and other allograft reactions; diet-induced fatty liver conditions,atheromatous lesions, fatty liver degeneration and other diet-induced high fat or alcohol-induced tissue-degenerative conditions; human immunodeficiency virus type 1 (HIV-1) and other human retroviral infections; multiple sclerosis; cancer; fibroproliferative diseases; fungal infection; drug-induced nephrotoxicity; collagenous colitis and other diseases and/or conditions characterized by elevated levels of platelet derived growth factor.
GW-677954 (CAS-No. 622402-24-8), FK-614 (CAS-No. 193012-35-0) and (−)-Halofenate (CAS-No. 024136-23-0). Preferred PPAR-agonists are ROSGLITAZONE and PIOGLITAZONE.

Specific examples of meglitinide agents include, but are not limited to REPAGLINIDE (CAS-No. 135062-02-1), NATIEGLINIDE (CAS-No. 105816-04-4) and MITIEGLINIDE (CAS-No. 145375-43-5).

Specific examples of DPP IV inhibitors include, but are not limited to DILAPALAFIL (CAS-No. 139755-83-2), VARSIK, ENALAPRIL (CAS-No. 102987-20-9) and TADALAFIL (CAS-No. 171596-29-5). Examples of PDE1, PDE9, PDE10 or PDE11 inhibitors which may be usefully employed according to the present invention can be found, for example, in WO2002160939, US2003037432, US2004220186, WO2005031219, WO200512485, US2005120514 and WO03077949.

A specific example of a Coenzyme A inhibitor includes, but is not limited to ETOMOXIR (CAS-No. 151126-32-8). A specific example of a Coenzyme A inhibitor includes, but is not limited to ETOMOXIR (CAS-No. 082258-36-4).

Specific examples of anti-obesity drugs include, but are not limited to HMR-1426 (CAS-No. 262376-75-0), CETILISTAT (CAS-No. 282526-98-1) and SIBUTRAMINE (CAS-No. 106650-56-0).

In another embodiment, the invention provides separate dosage forms of a compound of this invention and one or more of any of the above-described second therapeutic agents, wherein the compound and second therapeutic agent are associated with one another. The term “associated with one another” as used herein means that the separate dosage forms are packaged together or otherwise attached to one another such that it is readily apparent that the separate dosage forms are intended to be sold and administered together (within less than 24 hours of one another, consecutively or simultaneously).

In the pharmaceutical compositions of the invention, the compound of the present invention is present in an effective amount. As used herein, the term “effective amount” refers to an amount which, when administered in a proper dosing regimen, is sufficient to treat the target disorder.

The interrelationship of dosages for animals and humans (based on milligrams per meter squared of body surface) is described in Freeny et al., Cancer Chemother Rep, 50: 219. Body surface area may be determined approximately from height and weight of the patient. See, e.g., Scientific Tables, Geigy Pharmaceuticals, Ardsley, N.Y., 1970, 537.

In one embodiment, an effective amount of a compound of this invention is in the range of 20 mg to 2000 mg per treatment. In more specific embodiments the amount is in the range of 40 mg to 1000 mg, or in the range of 100 mg to 800 mg, or more specifically in the range of 200 mg to 400 mg per treatment. Treatment typically is administered from one to three times daily.

Effective doses will also vary, as recognized by those skilled in the art, depending on the diseases treated, the severity of the disease, the route of administration, the sex, age and general health condition of the patient, excipient usage, the possibility of co-usage with other therapeutic treatments such as use of other agents and the judgment of the treating physician. For example, guidance for selecting an effective dose can be determined by reference to the prescribing information for pentoxifylline.

For pharmaceutical compositions that comprise a second therapeutic agent, an effective amount of the second therapeutic agent is between about 20% and 100% of the dosage normally utilized in a monotherapy regime using just that agent. Preferably, an effective amount is between about 70% and 100% of the normal monotherapy dose. The normal monotherapeutic dosages of these second therapeutic agents are well known in the art. See, e.g., Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Taroscope Pocket Pharmacopoeia 2000, Deluxe Edition, Taroscope Publishing, Loma Linda, Calif. (2000), each of which references are incorporated herein by reference in their entirety.

It is expected that some of the second therapeutic agents referenced above will act synergistically with the compounds of this invention. When this occurs, it will allow the effective dosage of the second therapeutic agent and/or the compound of this invention to be reduced from that required in a monotherapy. This has the advantage of minimizing toxic side effects of either the second therapeutic agent of a compound of this invention, synergistic improvements in efficacy, improved ease of administration or use and/or reduced overall expense of compound preparation or formulation.

Methods of Treatment

In one embodiment, the invention provides a method of inhibiting the activity of phosphodiesterase (PDE) in a cell, comprising contacting a cell with one or more compounds of Formula A, B, or C.

In addition to its PDE inhibitory activity, pentoxifylline is known to suppress the production of a number of other biological agents such as interleukin-1 (IL-1), IL-6, IL-12, TNF-alpha, fibrinogen, and various growth factors. Accordingly, in another embodiment, the invention provides a method of suppressing the production of interleukin-1 (IL-1), IL-6, IL-12, TNF-alpha, fibrinogen, and various growth factors in a cell, comprising contacting a cell with one or more compounds of Formula A, B, or C.

According to another embodiment, the invention provides a method of treating a disease in a patient in need thereof that is beneficially treated by pentoxifylline comprising the step of administering to said patient an effective amount of a compound of Formula A, B, or C or pharmaceutically acceptable salt thereof or a pharmaceutical composition comprising a compound of Formula A, B, or C and a pharmaceutically acceptable carrier.

Such diseases are well known in the art and are disclosed in, but not limited to the following patents and published applications: WO 1998004928, EP 0493682, U.S. Pat. No. 5,112,827, EP 0484785, WO 1997019686, WO 2003013568, WO 2001032156, WO 1992007566, WO 1989055110, WO 200502193, U.S. Pat. No. 4,975,432, WO 1993018770, EP 0490181, and WO 1996005836. Such diseases include, but are not limited to, peripheral obstructive vascular disease; glucuronolactonephritis; nephrotic syndrome; nonalcoholic steatohepatitis; Leishmaniasis; cirrhosis; liver failure; Duchenne’s muscular dystrophy; late radiation induced injuries; radiation induced lymphedema; radiation-associated necrosis; alcoholic hepatitis; radiation-associated fibrosis; necrotizing enterocolitis in premature neonates; diabetic nephropathy, hypertension-induced renal failure, and other chronic kidney disease; Focal Segmental Glomerulosclerosis; pulmonary sarcoidosis; recurrent aphthous stomatitis; chronic breast pain in breast cancer patients; brain and central nervous system tumors; malnutrition-inflammation-cachexia syn-
In one embodiment, the method of this invention is used to treat chronic kidney disease. The chronic kidney disease may be selected from glomerulonephritis, focal segmental glomerulosclerosis, nephrotic syndrome, reflux uropathy, or polycystic kidney disease.

In one embodiment, the method of this invention is used to treat chronic disease of the liver. The chronic disease of the liver may be selected from nonalcoholic steatohepatitis, fatty liver degeneration or other diet-induced high fat or alcohol-induced tissue-degenerative conditions, cirrhosis, liver failure, or alcoholic hepatitis.

In one embodiment, the method of this invention is used to aid in wound healing. Examples of types of wounds that may be treated include venous ulcers, diabetic ulcers and pressure ulcers.

In another particular embodiment, the method of this invention is used to treat a disease or condition in a patient in need thereof wherein the disease or condition is selected from anemia, retinopathy, diabetic ulcers, radiation-associated necrosis, acute kidney failure or drug-induced nephrotoxicity.

In one embodiment, the method of this invention is used to treat a patient suffering from cystic fibrosis, including those patients suffering from chronic Pseudomonas bronchitis.

In one embodiment, the method of this invention is used to treat a disease or condition in a patient in need thereof selected from insulin dependent diabetes; non-insulin dependent diabetes; metabolic syndrome; obesity; insulin resistance; dyslipidemia; pathological glucose tolerance; hypertension; hyperlipidemia; hyperuricemia; gout; hypercoagulability; acute alcoholic hepatitis; olfaction disorders; patent ductus arteriosus; and inflammation or injury associated with neutrophil chemotaxis and/or degranulation.

The compounds are also useful for treating IL-12 or Th1 mediated diseases, including inflammatory diseases or disorders, such as, for example, arthritis, asthma, psoriasis, and adult respiratory distress syndrome; autoimmune diseases or disorders, such as, for example, autoimmune gastritis, autoimmune neutropenia, chronic active hepatitis, chronic thyroiditis, Crohn’s Disease, ulcerative colitis, systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, scleroderma, thrombocytopenia, thyroid diseases (e.g., Graves’ and Hashimoto’s disease), type-1-IDDM, and uveitis; and neurodegenerative diseases such as, for example, amyotrophic lateral sclerosis, Parkinson’s disease, and primary lateral sclerosis.

The compounds of Formula A, B, or C can also be used to control intracocular pressure or to stabilize auto-regulation of cerebral blood flow in subjects who require such control as determined by medical examination.

In one particular embodiment, the method of this invention is used to treat a disease or condition in a patient in need thereof selected from intermittent claudication on the basis of chronic occlusive arterial disease of the limbs and other peripheral obstructive vascular diseases; glomerulonephritis; Focal Segmental Glomerulosclerosis; nephrotic syndrome; nonalcoholic steatohepatitis; Leishmaniasis; cirrhosis; liver failure; Duchenne’s muscular dystrophy; late radiation induced injuries; radiation induced lymphedema; alcoholic hepatitis; radiation-induced fibrosis; neovascularizing enterocolitis in premature neonates; diabetic nephropathy; hypertension-induced renal failure and other chronic kidney diseases; pulmonary sarcoidosis; recurrent aphthous stomatitis; chronic breast pain in breast cancer patients; brain and central nervous system tumors; obesity; acute alcoholic hepatitis; olfaction disorders; endometriosis-associated infertility; malnutrition-inflammation-cachexia syndrome; and patent ductus arteriosus.

In one embodiment, the method of this invention is used to treat diabetic nephropathy, hypertensive nephropathy or intermittent claudication on the basis of chronic occlusive arterial disease of the limbs. In another particular embodiment, the method of this invention is used to treat a disease or condition in a patient in need thereof selected from intermittent claudication on the basis of chronic occlusive arterial disease of the limbs.
The term "co-administered" as used herein means that the second therapeutic agent may be administered together with a compound of the invention as part of a single dosage form (such as a composition of this invention comprising a compound of the invention and a second therapeutic agent as described above) or as separate, multiple dosage forms. Alternatively, the additional agent may be administered prior to, consecutively with, or following the administration of a compound of this invention. In such combination therapy treatment, both the compounds of this invention and the second therapeutic agent(s) are administered by conventional methods. The administration of a composition of this invention, comprising both a compound of the invention and a second therapeutic agent, to a patient does not preclude the separate administration of that same therapeutic agent, any other second therapeutic agent or any compound of this invention to said patient at another time during a course of treatment.

Effective amounts of these second therapeutic agents are well known to those skilled in the art and guidance for dosing may be found in patents and published patent applications referenced herein, as well as in Wells et al., eds., Pharmacotherapy Handbook, 2nd Edition, Appleton and Lange, Stamford, Conn. (2000); PDR Pharmacopoeia, Tarascon Pocket Pharmacopoeia 2000, Deluxe Edition, Tarascon Publishing, Loma Linda, Calif. (2000); and other medical texts. However, it is well within the skilled artisan's purview to determine the second therapeutic agent's optimal effective-amount range.

In one embodiment of the invention, where a second therapeutic agent is administered to a subject, the effective amount of the compound of this invention is less than its effective amount in a composition comprising both a compound of the invention and a second therapeutic agent. In another embodiment, the effective amount of the second therapeutic agent is less than its effective amount in a composition comprising both a compound of the invention and a second therapeutic agent. In this way, undesired side effects associated with high doses of either agent may be minimized. Other potential advantages (including without limitation improved dosing regimens and/or reduced drug cost) will be apparent to those of skill in the art.

In yet another aspect, the invention provides the use of a compound of Formula A, B, or C alone or together with one or more of the above-described second therapeutic agents in the manufacture of a medicament, either as a single composition or as separate dosage forms, for treatment or prevention in a patient of a disease, disorder or symptom set forth above. Another aspect of the invention is a compound of Formula A, B, or C for use in the treatment or prevention in a patient of a disease, disorder or symptom thereof delineated herein.

Diagnostic Methods and Kits

The present invention also provides kits for use to treat peripheral obstructive vascular disease, in particular intermittent claudication on the basis of chronic occlusive arterial disease of the limbs; glomerulonephritis; nephrotic syndrome; nonalcoholic steatohepatitis; Leishmaniasis; cirrhosis; liver failure; Duchenne's muscular dystrophy; late radiation induced injuries; radiation induced lymphedema; alcoholic hepatitis; radiation fibrosis; necrotizing enterocolitis in premature neonates; chronic kidney disease; non-insulin dependent diabetes; metabolic syndrome; obesity; insulin resistance; dyslipidemia; pathological glucose tolerance; hypertension; hypercoagulability; hyperuricemia; gout; and hypercoagulability.

The container may be any vessel or other sealed or sealable apparatus that can hold said pharmaceutical composition. Examples include bottles, ampules, divided or multi-chambered holders bottles, wherein each division or chamber comprises a single dose of said composition, a divided foil packet wherein each division comprises a single dose of said composition, or a dispenser that dispenses single doses of said composition. The container can be in any conventional shape or form as known in the art which is made of a pharmaceutically acceptable material, for example a paper or cardboard box, a plastic or glass bottle or jar, a re-sealable bag (for example, to hold a "refill" of tablets for placement into a different container), or a blister pack with individual doses for pressing out of the pack according to a therapeutic schedule. The container employed can depend on the exact dosage form involved, for example a conventional cardboard box would not generally be used to hold a liquid suspension. It is feasible that more than one container can be used together in a single package to market a single dosage form. For example, tablets may be contained in a bottle, which is in turn contained within a box. In one embodiment, the container is a blister pack.

The kits of this invention may also comprise a device to administer or to measure out a unit dose of the pharmaceutical composition. Such device may include an inhaler if said composition is inhaled and/or a syringe, spoon, pump, or a vessel with or without volume markings if said composition is an injectable composition; a syringe, spoon, pump, or a vessel with or without volume markings if said composition is an oral liquid composition; or any other measuring or delivery device appropriate to the dosage formulation of the composition present in the kit.

In certain embodiment, the kits of this invention may comprise in a separate vessel of container a pharmaceutical composition comprising a second therapeutic agent, such as one of those listed above for use for co-administration with a compound of this invention.

Biological Evaluation

EXAMPLES

Example 1

Evaluation of Metabolic Stability in Human Liver Microsomes

Human liver microsomes (20 mg/mL) are available from Xenotech, LLC (Lenexa, Kans.). β-nicotinamide adenine
the bicyclic ring system bearing X and Q is:

a 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione ring
where X is CR\(^{15}\) and Q is NR\(^{15}\);
either (a) Y\(^{1}\) is OH, and Y\(^{2}\) is hydrogen or deuterium, or (b)
Y\(^{1}\) and Y\(^{2}\) are taken together with the carbon to which
they are attached to form C–O;
R\(^{1a}\) is hydrogen, —CH\(_3\) or —CD\(_3\);
R\(^{2}\) is —CH\(_3\) or —CD\(_3\);
R\(^{3}\) is hydrogen or deuterium; and
R\(^{4}\) is —CH\(_3\) or —CD\(_3\), hydrogen or deuterium; and wherein
any atom not designated as deuterium is present at its
natural isotopic abundance.

2. The compound of claim 1, wherein the compound has
the Formula A(i) wherein the bicyclic ring system bearing X
and Q is a 1H-pyrrolo[2,3-d]pyrimidine-2,4(3H,7H)-dione ring:

or a pharmaceutically acceptable salt thereof.

3. The compound of claim 2, wherein R\(^{1a}\) is CH\(_3\).

4. The compound of claim 2, wherein R\(^{1a}\) is CD\(_3\).

5. The compound of claim 2, wherein R\(^{1a}\) is hydrogen.

6. The compound of claim 2, wherein R\(^{2}\) is CH\(_3\).

7. The compound of claim 2, wherein R\(^{2}\) is CD\(_3\).

8. The compound of claim 1, wherein each Z\(^{2}\), Z\(^{3}\), Z\(^{4}\) and
Z\(^{5}\) is hydrogen.

9. The compound of claim 1, wherein each Z\(^{2}\), Z\(^{3}\), Z\(^{4}\) and
Z\(^{5}\) is deuterium.

10. The compound of claim 1, wherein Z\(^{2}\) is deuterium and
either each of Z\(^{3}\), Z\(^{4}\) and Z\(^{5}\) is hydrogen or each of Z\(^{3}\), Z\(^{4}\) and
Z\(^{5}\) is deuterium.

11. The compound of claim 1, wherein Y\(^{1}\) and Y\(^{2}\) are taken
together with the carbon to which they are attached to form
C–O.

12. The compound of claim 1, wherein Y\(^{1}\) is OH, and Y\(^{2}\) is hydrogen
or deuterium.

13. The compound of claim 2, wherein the compound is of
Formula A(i), wherein R\(^{1}\) is hydrogen, Z\(^{1}\), Z\(^{4}\), and Z\(^{5}\) are each
hydrogen, and the compound is selected from the group
consisting of the compounds in the table below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>R(^{1})</th>
<th>R(^{2})</th>
<th>R(^{3})</th>
<th>Z(^{2})</th>
<th>Y(^{1})</th>
<th>Y(^{2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>CD(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>CH(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>CD(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>CD(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>CH(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>CD(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>CD(_3)</td>
<td>CH(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>CH(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>CD(_3)</td>
<td>CD(_3)</td>
<td>H</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>CH(_3)</td>
<td>CH(_3)</td>
<td>D</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>CD(_3)</td>
<td>CH(_3)</td>
<td>D</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>CH(_3)</td>
<td>CD(_3)</td>
<td>D</td>
<td>H</td>
<td>taken together as —O</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>CD(_3)</td>
<td>CD(_3)</td>
<td>D</td>
<td>D</td>
<td>taken together as —O</td>
<td></td>
</tr>
</tbody>
</table>
or a pharmaceutically acceptable salt of the compound.

14. The compound of claim 2, wherein the compound is of Formula A(i), wherein \(R^2 \) is \(\text{CH}_3 \) or \(\text{CD}_3 \), \(Z^2 \), \(Z^3 \), and \(Z^4 \) are each hydrogen, and the compound is selected from the group consisting of the compounds in the table below:

<table>
<thead>
<tr>
<th>Compound</th>
<th>(R^2)</th>
<th>(R^{1a})</th>
<th>(Z^2)</th>
<th>(Z^3)</th>
<th>(Y^1)</th>
<th>(Y^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>(\text{CH}_3)</td>
<td>(\text{CH}_3)</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>117</td>
<td>(\text{CD}_3)</td>
<td>(\text{CH}_3)</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>118</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>119</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>120</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>121</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>122</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>123</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>124</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>125</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>126</td>
<td>(\text{CH}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>127</td>
<td>(\text{CD}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>128</td>
<td>(\text{CH}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>129</td>
<td>(\text{CD}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>130</td>
<td>(\text{CH}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>131</td>
<td>(\text{CD}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>H</td>
</tr>
<tr>
<td>132</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>133</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>134</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>135</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>H</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>136</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>137</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>138</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>139</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>140</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>141</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>H</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>142</td>
<td>(\text{CH}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>143</td>
<td>(\text{CD}_3)</td>
<td>(\text{H})</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>144</td>
<td>(\text{CH}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>145</td>
<td>(\text{CD}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>146</td>
<td>(\text{CH}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
<tr>
<td>147</td>
<td>(\text{CD}_3)</td>
<td>(\text{CD}_3)</td>
<td>D</td>
<td>D</td>
<td>OH</td>
<td>D</td>
</tr>
</tbody>
</table>

or a pharmaceutically acceptable salt of the compound.

15. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically acceptable carrier.

16. A method of treating a disease or condition in a patient in need thereof, comprising administering to the patient an effective amount of a composition of claim 15, wherein the disease is diabetic nephropathy, hypertensive nephropathy or intermittent claudication on the basis of chronic occlusive arterial disease of the limbs.

17. The compound of claim 1, wherein any atom designated as deuterium has an isotopic enrichment of at least 90%.
18. The compound of claim 17, wherein any atom designated as deuterium has an isotopic enrichment of at least 95%.